
Compensating Room Effect with EQ Hadi Sumoro MX Audio lat

Sound System
Optimization?
Factoring Room Effect

It's always nice to start with a good sounding & well-behaved loudspeaker!

Our ear hears the sound from the loudspeaker and room reflections.

A room can't make a bad sounding loudspeaker sounds better, and a good sounding loudspeaker can't make a bad sounding room sounds better.

Puzzle 1: Loudspeaker layout & Choice

Puzzle 2: Room Acoustics

Puzzle 1 + 2 = A 'marriage' between a loudspeaker and a room How can we make them happily married?

Compromise!

It's easier for the loudspeaker to compromise. Use EQ(s),... by factoring in the room effect.

This article compares EQ creation for loudspeakers installed in a room by flattening the frequency response of the loudspeaker only vs flattening the averaged frequency response in the room.

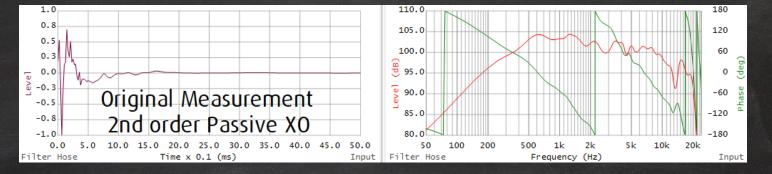
Measure 1x loudspeaker (outdoor / indoor with short windowing). Make it flat on-axis with FIR filter! Measure each listener position.

Create an averaged freq resp

(spatial averages).

Make the average flat with FIR

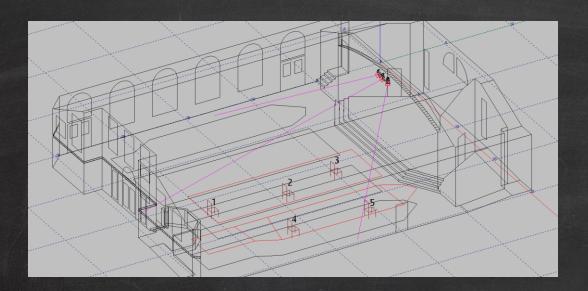
filter!


Tech Info: Room ímpulse response ís calculated using EASE AURA, auralization is done using EASE EARS.

Loudspeaker in use: Community R.S jr


Measurement was conducted outdoor as shown in the left picture.

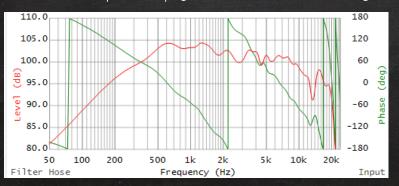
Mic location: 2m away, 1.6m above the ground, on-axis to the tweeter.



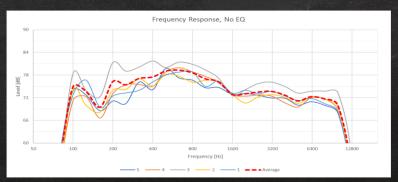
Pícture above: Original Response, no EQ.

Picture below: Response after FIR filter.

Tech Info: Dual FFT using EASERA, Window length is approx. 7ms, FIR filter is created using Filter Hose.



Room: A house of worship.


System: A Center Cluster consisting 3x RS jr loudspeakers.

Seats: 5x chosen listener positions that represents half side of the room (symmetrical room).

Loudspeaker On-Axis Response (no room effect) as shown in the previous page/slide. 1/12 oct smoothing.

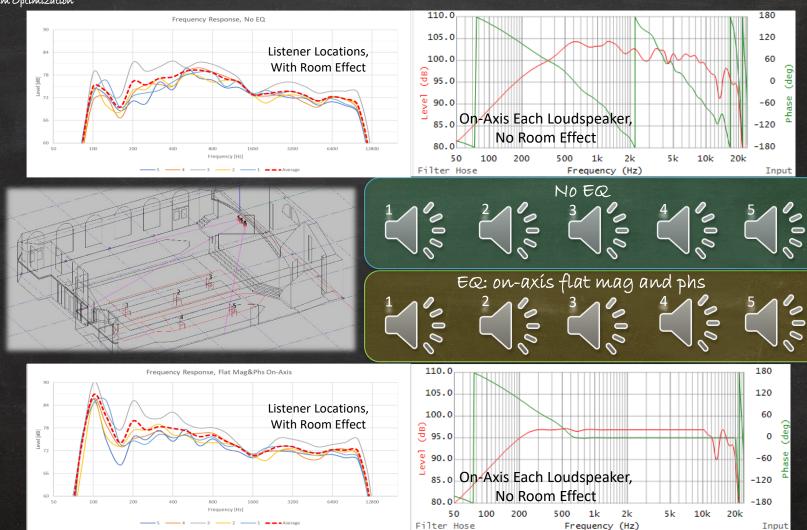
Frequency Response on each chosen listening position (room effect is included). 1/3 oct smoothing.

Please use Headphones!

Click on the loudspeaker icons to play the sound.

PDF: Use Adobe Reader

PPSX: Requires Office 2016 or newer


The numbers represent the listener positions.

Listening 1

NOEQ

VS

EQ to flatten each Loudspeaker on-axis response

Listening 2

EQ to flatten the spatial average of the 5x chosen listener positions

VS

EQ to flatten each Loudspeaker on-axis response

Sound System Optimization 95.0 180 Frequency Response, Flat Spatial Averages 90.0 120 Listener Locations, 85.0 With Room Effect 8 80.0 75.0 70.0 On Axis Each Loudspeaker, -120 No Room Effect 10k 20k Frequency [Hz] 50 Filter Hose Frequency (Hz) Output EQ: calculated flat spatial average EQ: on-axis flat mag and phs 110.0 180 Frequency Response, Flat Mag&Phs On-Axis 105.0 120 Listener Locations, 100.0 With Room Effect 95.0 90.0 85.0 On-Axis Each Loudspeaker, -120 No Room Effect -180

50

Filter Hose

20k

Input

Frequency (Hz)

Frequency [Hz]

So, should I create an EQ to compensate the loudspeaker <u>with or</u> <u>without</u> the room effect?

An EQ? How about several EQ curves and then combined? It is important to understand that Sound System Optimization is not a process that can be tackled with one process of EQ creation.

To make loudspeakers 'happily married' with a room, EQ creations can contain several layers, for example:

- One set of EQ from the manufacture (factory preset)
- Second set of EQ to compensate room effect
- Another set of EQ to fulfill subjective preference.
- Another set of EQ to fulfill client's subjective preference.
- Etc.

THANK YOU!

Contact info:

Hadí Sumoro HX Audío Lab www.HXAudíoLab.com

Song for auralization: Let's Get Real, an original song of New Pony Funk's band.