Sound Splash Tips

- 1. Show divider in 2D Schroeder Diffuser
- 2. Alternative Way of Inputting Huffman Sequence Index
 - 3. Creating a Symmetrical QRD
 - 4. Copy Pasting the 2D MLS Sequence to Clipboard

1. Show divider in 2D Schroeder Diffuser

Schroeder diffuser always calculates the well depth for each opening. In the 2D Schroeder Diffuser module, the default is showing the wood height (see the picture below).

В	uild Co	mponer	nt Diffus	er				
File								
Design Freq (Hz) 1000 🛓	r/c	1	2	3	4	5	6	7
Ohinese Reminder Simple	1	16.9	9.8	1.9	13.0	8.7	11.5	15
Prime Number 73: 8*9 V	2	16.2	11.4	3.8	2.9	9.4	9.9	13
Well Width (cm) 500	3	13.3	0.8	11.4	13.9	12.3	3.3	5
Out of Phase Switch Col/Bow	4	2.0	10.0	7.1	6.6	6.4	11.3	9
 Out of Phase Switch Col/Row ✓ Show Wood Height 		8.4	12.4	7.4	11.8	0.0	8.9	9
	6	16.6	4.6	8.3	15.4	9.0	16.7	8
QRD PRD LSD HSD	7	15.2	7.9	12.1	12.3	10.4	13.4	4
	8	9.6	3.9	10.0	0.0	16.0	0.2	7
Primitive Root Variation (24) 15 V	9	4.1	5.0	1.5	2.6	4.2	16.2	15
r, family number 9 🗸								
Refresh OK Close	<							>

1. Show divider in 2D Schroeder Diffuser

If the check box is unchecked the program will show the well depth. To understand which one is referred as well depth or wood height, right click on the picture and activate show divider option.

1. Show divider in 2D Schroeder Diffuser

The wood (at the bottom) is showing the wood height and the light blue color is showing the well depth.

2. Alternative way of inputting Huffman sequence index

Let's take an example of a Huffman sequence index as shown below.

	Well	Schematics	Well Depth (cm)	Wood Height(cm)
Jesign neq (nz)	1		34.43	0.00
Prime Number 23 V	2		1.18	33.25
Vell Width (cm) 5.00 🚖	3		19.01	15.42
Out of Phase Reverse	4		26.60	7.83
	5		22.37	12.06
	6		12.94	21.49
Constant (ç)	7		6.14	28.29
P/Q* Sequence Index 1022	8		0.00	34.43
P/Q ⁺ Sequence				

The sequence is: 101111111100111111110. We can break this sequence as follow: a. ignore the first number, b. split the rest in the middle, and c. ignore the last half numbers.

2. Alternative way of inputting Huffman sequence index

[1] 0111111110 [0111111110]

The ignored numbers are inside the square parentheses. With the same length, we can define a binary sequence, let's say: 1010101010101. To find the index, we can use a calculator to convert from binary to decimal of this sequence. The result is 1365.

View Edit Help View Edit Help 10101010101 0000 0000 0000 0000 0000 0000 0000 00	1365 0 0000 0000 32 1 0101 0101
10101010101 00000 0000 0000 0000 0000 0000 0000 63 47 32 00000 0000 0000 0000 0000 0000 0000 0	1365 0 0000 0000 32 1 0101 0101
$ \begin{bmatrix} 0000 & 0101 & 0101$	0 0000 0000 32
21 12 0 11 15	0 0101 0101
OHex Mod A MC MR MS M+ M- OHex Mod A MC MR	MS M+ M-
$\begin{array}{c c} O \text{ Dec} \\ O \text{ ot} \end{array} () B \leftarrow CE C \pm O \text{ ot} \end{array} () B \leftarrow CE C \pm O \text{ ot} $	C ± √
Image: Bin Rol RoR C 7 8 9 / % OBin Rol RoR C 7 8	9 / %
●Qword Or Xor D 4 5 6 * 1/x ●Qword Or Xor D 4 5	6 * 1/x
Obword Lsh Rsh E 1 2 3 Obword Lsh Rsh E 1 2	3 -
OByte Not And F O . + OByte Not And F O	. + -

2. Alternative way of Inputting Huffman Sequence Index

Input 1365 in Sound Splash Huffman sequence index box and the result is 1 10101010101 10101010101 (two spaces are inserted for easier visual comparison).

	Bu	ild Component Diffuser			x
File					
Design Freg (Hz) 500	Well	Schematics	Well Depth (cm)	Wood Height(cm)	^
	1		34.43	0.00	
Prime Number 23 V	2		17.22	17.22	
Well Width (cm) 5.00	3		17.22	17.21	
Out of Phase Reverse	4		17.22	17.21	
ORD PRD ISD PWRD HSD	5		17.22	17.21	
	6		17.21	17.22	
Constant (ξ)	7		17.21	17.22	
P/Q* Sequence Index 1365 🖨	8		17.21	17.22	
P/Q* Sequence	9		17.21	17.22	
11010101010101010101 ^	10		17.22	17.21	
¥	11		17.22	17.21	
Refresh Send Close	12		17.22	17.21	
	13		17.22	17.21	
	14		17.22	17.21	
	15		17.21	17.22	
	16		17.21	17.22	
	17		17.21	17.22	Y

3. Creating a Symmetrical QRD

By default, QRD diffuser generation is shown in the picture below. Please note the asymmetric well sequence.

3. Creating a Symmetrical QRD

Click on the list, right click to bring the menu. Select Add Well and then Barrier Well. This will duplicate the first well to the end.

3. Creating a Symmetrical QRD

Unit 2 in the picture below is a well with 0cm depth. The whole sequence is now symmetrical.

4. Copy Pasting the 2D MLS Sequence to Clipboard

After all parameter is completed and calculation is done, left mouse click on the first patch, hold and drag it to the last patch.

+	Sound Splash - 2D 👖 S Diffuse	er Builder 🗕 🛙	×		
File Setting A	About				
Cut off Freq (Hz) Patch Size (cm) Array Dimension	8607.50 2.00 ÷				
Switch 0/1	Switch Row/Col		- K		
Row Start Point Col Start Point	3 ~	Ŧ	Sound Splash - 2	D MLS Diffuser Builder	- • ×
		File Setting	About		
Diffuser Dimension: (0.18m by 0.14m	Cut off Freq (Hz) Patch Size (cm) Array Dimension Switch 0/1 Row Start Point Col Start Point	8607.50 2.00 ♀ 7*9 ∨ Switch Row/Col 3 ∨ 7 ∨		
		Diffuser Dimension:	0.18m by 0.14m		

4. Copy Pasting the 2D MLS Sequence to Clipboard

The 1 and 0 can be copied to clipboard and brought to program such as Microsoft Excel. Note: 0 (zero) is referring to the absorptive surface.

🗱 🔒 🍤	• @ ·	Ŧ						Book	:1 - Ex	cel								1	? 📧	- 🗆	×
FILE HO	OME	INSERT	PAGE LAYOU	T FOR	NULAS	DATA	. 1	REVIEW	/	VIEW		DEVEL	LOPER	2	ADD-INS					Sign in	P
Paste	Calibri B I	• 1 <u>U</u> • ⊞ •	1 • A 4	•	= % ≡ €	• 🖥	-	Genera \$ +	al %"		▼ 00. 0. ••00		Con Forn Cell	dition nat as Styles	al Formatting + Table +	E In: De E Fo	sert + elete + ormat +	∑ - ↓ - ∢ -	AZ▼ Sort & Filter ▼	Find & Select *	
Clipboard 🕞		Font		ra I	Alignmen	t	Es		Numb	er	r	5		St	tyles	c	ells		Editing	1	^
G8		• : ×	 ✓ 1 	6x 0																	~
A	В	С	D	E	F	G	Н	1	J	K	L	М	Ν	0	Р	Q	R		S	т	
1																					-
2																					-
4																					
5																					
6																					-
7									1	1	0	0	0	1							-
9						1		1	0	0	1	0	1	1							
10						() (1	1	1	1	0	0	1							
11						1	l 1	. 0	1	1	0	1	1	1							
12						1		0	0	0	0	0	1	1							_
13						() 1	. 0	0	0	0	1	0	1							-
14						(. 1	0	0	1	1	0								-
16																					
17																					
18																					-
	Shee	et1 (+)										4								Þ
READY 🔠					_		A١	/ERAGE	: 0.492	20634	92 (COUN	IT: 63	SUM	<i>I</i> I: 31	B	D	_	1	-+ <u>100</u>)%